
e Fermi National Accelerator Laboratory 

June 1991 FERMILAB-PUB-91/183 -T 

Two Dimensional Gravity with Boundary 

Parthasarathi Majumdsx’ 

Fermi National Accelerator Laboratory 

P. 0. Box 500, Batavia, IL 60510 

and 
Department of Physics and Astronomy 

University of Maryland, College Park, MD 20742 

ABSTRACT 

An attempt is made to incorporate the effects of a boundary in the 
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1. Introduction 

Several years ago, Alvarez [l] made an in-depth analysis of the corrections to the 

Polyakov string due to the presence of boundaries and handles on the two dimen- 

sional world sheet. The main motivation was to study the Polyakov string [2] as 

a phenomenological model of Wilson loops in quantum chromodynamics. Despite 

the elegance and comprehensive nature of this analysis, a complete solution of the 

problem proved elusive largely because of the absence of a framework to probe the 

physics of the Liouville mode. Over the last few years, the latter has been investi- 

gated extensively, both in the continuum where the renormalization of all couplings 

and anomalous dimensions of a class of vertex operators have been obtained [2,3], and 

also through discretization of the random surface which is then mapped to certain 

large order matrix models leading to exact solutions for conformal matter couplings 

with central charge c 5 1 [4]. However, with some notable exceptions [5,6], the ef- 

fects of the presence of a boundary on the 2d random surface have been ignored. My 

purpose in this note is to address this issue in the case of continuum 2d gravity using 

the approach of ref. [3], supplemented by the works of Mavromatos and Miramontes 

[7] and D’Hoker and Kurzepa [a]. In particular, we re-examine the analysis in ref. [l] 

to see if an improved insight can indeed be obtained. Although this problem clearly 

pertains to the open rather than the closed string, boundary effects may play an im- 

portant role if the low lying excitations of QCD eventually turn out to be describable 

in terms of a string theory. This is true even for the effective string theory currently 

being considered as a model of hadrons [9], if one wishes to include chiral fermions as 

sources of chromodynamic flux tubes. 

This work is of a preliminary nature; we begin by briefly reviewing the arguments 

of Alvarez [l] for his choice of boundary conditions. This is followed by a discussion 

of the functional measures needed to define the partition function of the theory. The 

functional measure for the Liouville field is chosen to be invariant under a Weyl 

transformation of the fiducial metric and a simultaneous translation of the Liouville 

field. We then follow ref.s [7] and [8] t o compute the Jacobian emerging from a 

transformation of the functional measure to one that is translationally invariant. This 

enables us to obtain the renormalizations of the coupling constants and anomalous 

dimensions of certain operators. We find that, with the choice of boundary conditions 

espoused in [l], boundary effects do not alter the analysis in the bulk [3] in so far as 

the central charge and the renormalization of the cosmological constant operator are 

concerned. We also show that because the boundary condition proposed in [l] relates 

the Liouville field to reparametrizations of the affine parameter on the boundary, 

integrating over all such reparametrizations leads to an additional boundary term in 
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the Liouville action, while the LiouvilIe field itself is rendered free on the boundary. 

Furthermore, the ‘naive’ energy momentum tensor calculated from this action has 

contributions from the boundary which make the trace nonvanishing even when the 

cosmological terms are renormalized away. The vanishing of these terms entails extra 

constraints on the boundary value of the Liouville field which are very similar to 

the Neumann boundary conditions used by Martinet et. al. [5] to study boundary 

operators in 2d gravity. 

2. Boundary Conditions 

Following [l] we consider a compact two-fold M with boundary a&f, with local 

coordinates zD , a = 1,2, and metric gob(z), assumed to have an Euclidean signature. 

The boundary is parametrized by the real afline parameter s, and defined by the 

curve 2; = Z;(S). The line element on the boundary is given by 

dS2 = g.b(zo(a))dt;dz; = gab(s)i,“i;ds’ , (2.1) 

where, 20 = dzs(a)/ds ; thus, defining the frame field E(s) on the boundary as 

E(s) G [g&+))i& , 

the line element may be reexpressed as dS = E(a)ds. The unit tangent and normal 

vectors to the boundary are then defined as 

t’ s i;/(& = E-‘2; , 

and 

na z Eabtb = e4bE-‘io.b . 

In the Polyakov formulation [2] of the bosonic string, the integration in the par- 

tition function over the two dimensional intrinsic metric gab can be factored after 

a conformal gauge fixing (gob = &&,b ) into integrations Over infinitesimal diffeO- 

morphism6 w”(z) and the Liouville field d(z). F or surfaces without boundary, this 

yields a Jacobian which is independent of the the wn(z), as is the action through its 

reparametrization invariance. Thus the integral over the diffeomorphisms is elimi- 

nated by dividing the functional integral by the volume of the group of infinitesimal 

diffeomorphisms. When the world sheet has a boundary, the question of the boundary 

condition on w needs to be addressed. The naive choice ~‘1s~ = 0 contradicts the 

fact that the wn must satisfy the equation [2] 

v(&b) - ;%bv’W. = %S , 
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where, yob is a traceless symmetric second rank tensor field which does not necessarily 

vanish on the boundary z = xo(s).s One needs to allow for reparametrizations of the 

afline parameter s parametrizing the boundary s -t o(s). Thus the preferred bound- 

ary condition on the infinitesimal diffeomorphisms requires [1,2] that they vanish on 

the boundary mod& infinitesimal reparametrizations of the affine parameter. In or- 

der that s-reparametrizations do not affect the shape of the boundary, one imposes 

the further condition [1,2] 

nQ.(zo(~)) = 0 1 (2.3) 

so that 

w”(zo(s)) = Pkx(3) ) (2.4) 

where so(s) corresponds to an infinitesimal reparametrization of the affine parameter 

3. 

The boundary condition (2.4) has the immediate consequence (11 that 

nntb [V(&,) - fg&ln&] = ka(a) (2.5) 

on the boundary 8M. This is derived using the following geometrical relation, 

VT,&” = k(a)nb , CW 

where k(s) is the geodesic (extrinsic) curvature on the boundary. This quantity also 

appears in the formula for the Euler characteristic of a two dimensional Riemannian 

manifold with a boundary, 

2xX(M) = f J)s(g) + lMEk , 

and has the property k = k. # 0 fm gab = 7l.b. 

At point one must also specify the boundary condition on the Liouville field 4 

in order that the partition function may be evaluated. In ref. [l], the two-fold is 

embedded in spacetime in a manner such that the boundary 8M coincides with a 

curve C which can be identified with a Wilson loop. In doing so, Alvarez chooses the 

modified Dirichlet boundary condition 

h.&‘tb = 0 CTt a?d , (2.7) 

where ho6 is the induced metric on the world sheet. Imposing the restriction that the 

length of the boundary as measured by the induced metric must be identical with that 

‘Eq. (2.2) follows from the attempt to gauge fix the metric to the conformal gauge by infinitesimal 
diffeomorphisms. 
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measured by the intrinsic metric, he obtains the following restriction on infmitesimal 

deformations of C#J at 8M 

6cj(z,(s)) + t”tbVawb = 0 a aA4 . 

Using eq.s (2.4) and (2.6), this equation simply implies that 

Gw 

Sc$(q,(s)) + 2E-‘$~(s) = 0 on L’M 

This last relation will be of importance in the sequel. We remark that this is also a 

modified Dirichlet boundary condition on the Liouville field 4. 

3. Functional Measures 

As stated earlier, the passage to the conformal gauge 

gab = e%c,b , (3.1) 

where & is the fiducial 2-metric, implies that S’Dg + S’DuV&7, with ,7 the 

Jacobian of the transformation of integration variables. Further, the integration over 

the infinitesimal diffeomorphism w is given by eq. (2.4) on the boundary. Now, 

observe that as far as the bulk diffeomorphism is concerned, the Jacobian in (3.1) 

as well as the action are independent of it, so that, upon division of the functional 

integral by the volume of the group of infinitesimal diffeomorphisms in the bulk, one 

obtains , 

J 
=‘oq+ = 
Vdif f J VDaD~j . (3.2) 

The integral over the reparametrizations IX(S) of the boundary 8M is, however: non- 

trivial since the boundary condition on the Liouville field depends on a(s). 

Thus, the conformal ( &dependent) part of the Polyakov functional integral, after 

evaluation of the functional determinants arising from gauge fixing [l] takes the form 

(with g-b the fiducial metric from now on) 

where 

WllE) = J D#JDae-s(‘~E~+)6[q5 + 2Pci(s)] , (3.3) 

s(g,E,4) = S(g,E,O) + Q: [I&,4) + Ib(‘%4)1 + &%,d) 
(3.4) 

+ -bB(E, 4) + d’(E,+) , 
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with 

ug> 4) = & J, d2zJij [gba.ew + +qg)d] 
b(E,#‘) = & J -W 8M 
Ah+)= -&J d’zJTje’* 

M 
(3.5) 

B(E,d)= 1 J w md 
dsEe” 

J’(E,d)= ; J daEn*&qS . 
BM 

s - 1 Here the coupling constant Q, - x( 26 - c,,,), and the other ‘bare’ parameters are 

f.ree.s Throughout (3.4-5) and the sequel, gob will denote the fiducial metric on the 

2-fold and E the corresponding einbein (frame field) on 8M. The delta functional in 

(3.3) constrains the 4 field on the boundary to obey the boundary condition (2.9). 

The presence of this delta functional makes the integral over the a(~) non-trivial, 

unlike the integral over the infinitesimal diffeomorphisms w. 

The functional measure for the Liouville field is defined through the metric on the 

space of functions (4) [1,2] 

I ISA I’W = J, d2wze2+(wa. (3.6) 

Clearly, this metric and the measure defined from it are invariant under the Weyl 

transformations 9.b --t e2ug.b , 4 -+ 4 - n. The transition to a measure that is 

invariant under translations of 4 alone, namely 

!IW = J M d2w’XWa 
will entail a Jacobian [3]. This has been calculated explicitly in ref.6 [7] and [8], and 

found to be identical in form to the Liouville action, for the case when the twofold 

has no boundary, i.e., the action is the sum of the terms 1. and A in (3.4). In our 

case there is also the additional integral over the boundary reparametrizations a(s) 

whose measure may be chosen to be invariant under translations of the Liouville field 

ll%~)ll: = lrnds E(Sa)’ ; (3.6) 

‘Although for the case at hand, c, denotes the spacetime dimenaionality, it could be taken to 
indicate the central charge of any conformal (matter) field theory coupled to gravity. 
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thus, this choice ensures that the only contributions to the Jacobian come from the 

change in the meaSure for the Liouville field. If we had alternatively chosen a Weyl- 
invariant measure for a(s), additional boundary contributions would indeed have had 

to be taken into account. We shall comment on these later. 

It is convenient to rewrite the functional integral (3.3) as 

GE) = J D4 Da Don e- S - jaHW9 + aE-‘61 (3.3’) 

where we have introduced an auxiliary field n to exponentiate the delta functional. 

The functional measure for the Cl integration is also chosen to be invariant under 

translations of the Liouville field like (3.8). 

4. The Jacobian 

We introduce a parameter X E [0, l] to define a family of metrics 

gab(x,X) z e2’L”gat.(Z) 

interpolating between the fiducial metric and the Weyl-transformed one. The corre- 

sponding interpolating einbeins on the boundary may be defined similarly, 

E(X) z eX4E . 

The Jacobian erp - J in a transition to a translationally invariant measure can be 

written down formally as 

e -’ = Deti[e+(“) + “(“‘)6,(x+1, .z2)] , (4.1) 

where, 6,(y(z1,zI) is the covariant delta function appropriate to the interpolating 

metric. For infinitesimal values of X, one obtains 

6J = - Tr,p~[qGX] ; (4.2) 

the trace on the rhs is infinite and needs to be regularized. We use the heat kernel 

regulator [7,8] and rewrite (4.2) as 

J 
1 

J rep = - lim.,o dX TV, [q5e-eAs(A)] , 
0 

where AD(x) is the covariant Laplacian corresponding to the interpolating metric. 
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The trace in the integrand on the rhs may be evaluated using heat kernel expansion 

formulas derived in ref. [l], yielding 

J *cg = - lim .-oJ)A r~~M~~c~, - ~~MWi+o14~ 

1 
+ - [: J, v’ZMg(~))d(z) + 1, E(WWM.)] 12x (4.4) 

1 -- 8T BME(~)~a(X)a.4(~~(s)) + W+) . J 
To perform the integral over A, observe that for a weyl transformation gob + eaugdr 

one has the relations 

R(e’“g) = e -“[R(g) + 2474 

k(e”E) = e-“[k(E) - na&u] . 
(4.5) 

Using these and performing the resulting quadrature6 we get 

J rcg = - lim c-ot & J, ti(e’” - 1) - 6 JBME(e” - 1) 
1 

+- 
12?r [I f /CR + A,4)4 + J E (k - ;fM) 4 1 (4.5) 

BM 
1 -- 8n BMEW) J 

Further simplification is obtained by use of Stokes’ Theorem which provides the 

useful relation 

J ~* 43 444 = J E 44x4 + (4.7) 
BM J M Jjig”“a.dab+ 1 

yielding fidly 

J reg = - lim.,o - 1 J ,& M fi (=” - 1) - 6 l,E (eb - 111 
1 

+ - [t J, & kfbh@bd + R(gM) + l, E W] + ; J,,E 84 127r 
(4.8) 

The regularized Jacobian is then inserted into the partition function (3.3’) which 

takes the form 

W+E) = J Don -iTa I+$ e-{Qf + LM E “(# + ZE%)} , (4.9) 



where, 

s eff = S(g,E,O) + 
3Q; - 1 

12n J M & ( snba.4W + R(s)4 1 
+ 36: - 1 

12a 
l-E+’ + &P: - ;I J,w . 

+ &(Ao - -$liMEed + &PO - l)iMEa-d 
(4.10) 

Before we go on to discuss the renormalization of the partition function in the 

above equations, we note that the integrals over o(s) and a(s) can be performed in 

that order. Since S.ff is independent of both these functions, our concern is only 

with the second term in the exponent in (4.9). The integral over (I yields 

Z(g, E) = J Dde-s.tt J Z>Re--faMEn+ s[ti(s)l , (4.11) 

where, a partial integration has been performed first to flip the s-derivative on R. 

Since R = 0 tt n(s) = n(O) E R,, the integral over R becomes trivial, 

producing the result 

%d) = J W=- [S.,, + no jaME +0(4)1 . (4.12) 

Consequently, the boundary value of the Liouville field d(zs(s)) is rendered uncon- 

strained by this manipulation, albeit at the expense of introducing a new boundary 

term proportional to 4 into the action. The constant Ro is arbitrary. 

5. Renormalization and Anomalous Dimensions 

It is clear from eq.s (4.9-10) that the incorporation of the Jacobian produces 

terms in the ‘effective’ action S.ff which are renormalizable. The simplest of the 

renormalizations is the finite renormalization of the coupling constant Qo E [;(26 - 

cm)] ; from (2.18) we see that the renormalieed coupling constant Q is given by i 

3Q’ = 3Q; - 1 = 25 - c, , (5.1) 

which is the well-known value of the ‘background charge’ obtained for the case without 

the boundary [3,‘7,8]. Here, as in [7,8], it emerges directly from the computation of 

the Jacobian, using a Weyl-noninvariant regularization. Observe that the boundary 

term linear in #I has the same parameter in front provided we rescale the constant no 

appropriately. Thus, boundary effects do not alter the bulk renormalization of the 
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charge Q, although the earlier interpretation of this constant as a background charge 

[3] at infinity for a free conformal field theory is perhaps no longer valid. 

Observe also that the above result emerged on the assumption that the measures 

for the integration over a(s) and Cl( ) s were invariant under shifts of the Liouville field. 

If, instead, we had employed a Weyl-invariant measure, and appropriately regularized 

the resulting Jacobian as above, our conclusions might have been different. We hope 

to report on this elsewhere. 

The renormalization of the bulk cosmological constant can be performed as usual 

: one writes & = p2 + 6~” and chooses the counterterm 6$ to eliminate the 

divergent term. In ref. [3], the choice of the counterterm is made to eliminate the 

rermmol~ed cosmological term altogether, but this will not be necessary for our 

purpose. The divergent piece of the ‘boundary cosmological term’, namely JaM EeT* 
can be similarly eliminated by defining As = X + 6X, as also the finite renormalization 

of the normal derivative term. We must also include a wave function renormalization 

for the 4 field involving a parameter 7 which will determine anomalous dimensions of 

certain operators. We scale the Liouville field in such a way that this wave function 

renormalization parameter 7 resides only in the cosmological constant terms. Finally, 

resealing the (renormalized) 4 field as 4 -+ d/Q, we can retrieve the canonical 

form for the kinetic energy term for the Liouville field. Thus, in sum, we get the 

‘conformal’ piece of the Polyakov partition function for genus zero, 

z(g, E, fb) = J Dd=zp - ( & J, fi [sabbPv+ + Q R(g) d] 

+2 J E(k + no)4 + $ J, ~;je’yb + -L-J EeT4 SJ;; BM (5.2) 
.3&f 

- +-JMm4 
We still have to determine the parameter 7; since the same parameter characterizes 

both the bulk and the boundary cosmological terms, one expects 7 also to be identical 

to the bulk value 131, namely given by the quadratic equation 

27” - Q-/ + 1 = 0. (5.3) 

This follows from the fact that the energy momentum tensor has the usual bulk 

contribution 
T, = ;[ h%f’ - j%b(@)’ 

+ Q(a.m - &b&) f p2~,,beh*] , 

(5.4) 

so that the operator product expansion with the operator e*l+ produces exactly the 

same singularities as in the bulk analysis [3,6,7]. Eq. (5.3) arises if this operator is 
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required to be a primary field of the Liouville-matter CFT with conformal dimension 

W).’ 

The situation is less clear with regard to the boundary terms. First of all, the 

straightforward calculation of the energy momentum tensor from the Liouville action 

in (4.10) has a contribution from the boundary given by, 

T."d" = i Q[(% + ho) - da&j + Xey+}t,,tb 

where of course, 4 = 4(20(s)). Thus the total energy momentum tensor is the sum 

of the bulk and boundary tensors given by eq. (5.4,5). Now, while the trace of the 

bulk tensor vanishes for p = 0 independently of Q, for the boundary contribution 

to be traceless one needs to satisfy the condition 

naa.d = (rC, + ilo)4 + +ld , 

so that even for X = 0 one has a nontrivial condition for the 4 field. This condition 

in fact ensures that the entire boundary contribution to the energy momentum tensor 

vanishes. It follows that the boundary contribution violates the conformal symmetry 

of the 4 field action even for vanishing cosmological terms. 

The full import of these boundary terms is yet to be worked out. Essentially they 

generate reparametrizations of the afline parameter parametrizing a&f. But this 

breaks the 2d conformal invariance of the theory. It is not clear that if we had started 

with Neumann type boundary conditions and retraced the steps we have followed 

so far, the boundary contribution would have vanished. This is particularly true for 

terms depending on the extrinsic curvature k of 8M. Recall that k appears in the 

formula for the Euler characteristic of the two-fold, and is quite independent of the 

boundary condition on 4. Clearly therefore, much more remains to be investigated 

before we understand these boundary terms. 

6. Conclusion 

The innocuous nature of the boundary effects discerned by us may be traced 

to our employment of translationally invariant integration measures for integrations 

over boundary reparametriaations a(s) and the auxiliary field n(s). Thus the final 

Liouville action decomposes into mutually independent contributions from the bulk 

and the boundary with the latter having almost no effect on the renormalizations of 

the parameters of the former. The same is true for the energy momentum tensors. 

‘We sre assuming of eonrse that no subtlety arises when free field OPEs are used 
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The only non-trivial feature that emerges is that, after ‘deconstraining’ the boundary 

value of 4, 2d conformal invariance of the theory (for vanishing cosmological terms) 

is broken by the boundary contributions. Further constraints must be imposed on 

the Liouville field on the boundary if these terms are to be eliminated. 

It is interesting, although perhaps not surprising, to note that the condition (5.6) 

above for the vanishing of TfbM reduces to the Neumann boundary conditions used in 

ref.[5] to analyze boundary operators in 2d quantum gravity, provided of course we 

set b + 520 = 0. In this case, with the cosmological terms renormalized to sero a 

la’ ref. [3], the use of the free field OPEs in [5] to calculate the so-called boundary 

dimension of boundary operators is perfectly in order. The question that remains 

however, is that if the constraint above were to be imposed from the outset instead 

of those of ref. [l], i.e., eq.(2.7), will the boundary terms in the energy momentum 

tensor vanish. This is currently under investigation, as also is the issue of using a 

Weyl-invariant measure for integrations over a(a) and B(a). 
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